天天爽天天看-日本少妇xxxx动漫-亚洲av成人精品毛片-欧美一区二区三区激情啪啪-91精品国产成-欧美牲交a欧美牲交aⅴ-欧美日韩国产免费观看-九九99精品久久久久久综合-欧美理论影院-国内老熟妇乱子伦视频-www在线观看av-黄色裸体网站-少妇高潮惨叫久久久久久-国产偷国产偷av亚洲清高-国产午夜精品理论片小yo奈-高大丰满熟妇丰满的大白屁股

Ultrafast laser-inscribed fiber Bragg gratings for sensing applications

source:SPIE

keywords: Ultrafast laser

Time:2016-06-14

 Stephen Mihailov

 

Silica optical fiber Bragg grating sensors made with ultrafast lasers are ideally suited for sensing in high-temperature environments.
4 June 2016, SPIE Newsroom. DOI: 10.1117/2.1201605.006483

006483_big
UV laser-induced fiber Bragg grating (FBG) sensors are small in size, passive in nature, have immunity to electromagnetic interference, and are capable of directly measuring physical parameters such as temperature and strain. These features have inspired researchers to develop FBGs beyond the laboratory for mainstream sensing technology applications. Recently, high-temperature stable gratings made with femtosecond pulse-duration IR laser processing (fs-IR) have shown promise for use in extreme high-temperature, high-pressure environments, or in ionizing radiation, where UV laser-induced FBGs fail. Such gratings are ideally suited for energy production applications where there is a requirement for advanced instrumentation and controls that are operable in harsh environments.1

The FBG is a band-rejection optical filter within an optical fiber. It passes all wavelengths of light that are not in resonance with it, and reflects those that satisfy the Bragg condition of the high-power laser-induced core index modulation Δn, namely: 



In this equation, λB is the FBG Bragg resonance or Bragg wavelength, ne# is the effective refractive index seen by the guided mode of light propagating down the fiber, and ΛG is the period of the Δn that makes up the grating (see Figure 1). FBGs are effective sensing elements, possessing all the advantages of fiber-optic-based sensing approaches over more established electrical sensor technology.2 The sensing function originates from the sensitivity of both the ΛG and ne# of the optical fiber to the immediately surrounding environment. As the FBG-reflected light is dependent upon ΛGand ne#, externally applied mechanical or thermal perturbations affect the FBG response directly, through the expansion or compression changes of ΛGand through the strain- and thermo-optic effects (i.e., the strain/temperature-induced change in the glass refractive index).

 
Figure 1. Schematic representation of a fiber Bragg grating (FBG).

Commercial FBG interrogators that monitor spectral shifts in the λB have resolutions in the telecom band on the order of 1 picometer. Direct monitoring of shifts in λB results in minimum detectable strains of ∼1με/ # Hz rms at constant temperature and minimum temperature variations of 0.1°C in the absence of strain.2 Such FBG sensors have been used in civil structures, aircraft, naval ships, and oil pipelines as ‘ smart skin’ sensor webs to measure the in situ temperature and stress of these structures below 200°C. At more extreme temperatures (>450°C), however, standard UV-induced FBGs are unstable and erase.

FBGs inscribed with fs-IR lasers can be thermally stable up to the fiber glass transition temperature. They can be induced in any optical fiber3 by exploiting non-linear multiphoton photosensitivity mechanisms (which are significantly different from the UV-induced color-center formation photosensitivity mechanisms).4 Thermally stable FBGs can be used for sensing in harsh environments within power plants, turbines, combustion systems, and in the aerospace sector. Such FBGs are fabricated using either a phase mask3 or a ‘ point-by-point’ approach.5 The phase mask is typically a silica transmission diffraction grating that is precision-etched so that the laser light used to write the FBG creates an interference pattern. This pattern generates the index modulation (Δn) in the fiber core. The ‘ point-by-point’ approach involves a microscope objective and a precision translation stage, and then creation of the Δn using single high-intensity pulses for a femtosecond laser. This creates individual grating planes through a step-and-repeat approach.

In the oil and gas sector, thermal techniques for unconventional oil recovery create harsh downhole environments. When subjected to these conditions, fiber optic sensors are hampered by optical losses that result from ingress of high-temperature hydrogen gas. This is especially true for standard germanium-doped telecom fibers. Using pure silica core fibers that do not suffer from hydrogen-induced attenuation can mitigate these effects.6However, FBG-based distributed sensing arrays are extremely difficult to produce in pure silica core fiber using conventional UV-laser-based inscription. Using the fs-IR approach, it is possible to write high-Δn FBGs easily in pure silica optical fibers, which are then resistant to hydrogen-induced loss.7 The use of such fibers is essential for improving sensor array performance to monitor (for example) steam-assisted gravity drainage in the oil and gas industry.

We recently deployed the fs-IR technique at a site in Canada where a research organization is exploring the use of oxy-pressurized fluidized bed combustion for power generation.8 For optimal efficiency, this combustion process requires accurate measurements of temperature gradients within the combustor, and these measurements are difficult to realize using standard electronic thermocouple technology. At the research site, we deployed seven arrays containing 132 fs-IR laser-written type II FBG temperature sensors to the internal thermal gradients of the fluidized bed pilot combustor. Figure 2shows the reflection spectrum of one of the fiber arrays, as well as temperature mapping within the fluidized bed combustor as a function of position and time during part of one thermal cycle of the combustor. The sensor arrays performed well over five months through multiple thermal cycles of up to 1025°C. The advantages of this fiber optic deployment were clearly demonstrated with respect to cable management, ease of installation, high density of sensing points,' and more rapid response to thermal changes' compared with an electronic thermocouple approach.


Figure 2. (a) Room temperature reflection spectra from a single FBG array after one thermal cycle of a fluidized bed combustor. (b) Combustor temperature as a function of position and time, during part of one thermal cycle, plotted with 10-minute resolution. dB: Decibels.

In summary, fiber Bragg gratings made with femtosecond pulse duration lasers in silica fiber have thermal stabilities that make them effective sensors in high-temperature environments. We successfully deployed a quasi-distributed FBG temperature sensor array made with an IR femtosecond laser within an oxy-pressurized fluidized bed combustor. We are now working to improve sensor performance through optical fiber design and sensor packaging. This includes investigations into crystalline-based fibers such as sapphire.

Stephen Mihailov
National Research Council of Canada
Ottawa, Canada

Stephen Mihailov is leader of the Fibre Photonics Group. He is an experimentalist with over 25 years of experience in scientific research involving material processing with high-powered laser systems. He has more than 200 publications and 19 issued US patents.

References:
1. S. J. Mihailov, Ultrafast laser inscribed fiber Bragg gratings for sensing applications, Proc. SPIE 9852, p. 98520P, 2016. doi:10.1117/12.2229313
2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, Fiber grating sensors, J. Lightwave Technol. 15, p. 1442-1463, 1997.
3. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, J. Unruh, Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation, Opt. Lett. 28, p. 995-997, 2003.
4. C. B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,Meas. Sci. Technol. 12, p. 1784-1794, 2001.
5. A. Martinez, I. Y. Khrushchev, I. Bennion, Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser, Electron. Lett. 41, p. 176-178, 2005.
6. P. E. Sanders, Fiber-optic sensors: playing both sides of the energy equation,Opt. Photon. News 22, p. 36-42, 2011.
7. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, J. Unruh, Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask, J. Lightwave Technol. 22, p. 94-100, 2004.
8. R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, et al., High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings, Proc. SPIE 9754, p. 975413, 2016. doi:10.1117/12.2209399
天天爽天天看-日本少妇xxxx动漫-亚洲av成人精品毛片-欧美一区二区三区激情啪啪-91精品国产成-欧美牲交a欧美牲交aⅴ-欧美日韩国产免费观看-九九99精品久久久久久综合-欧美理论影院-国内老熟妇乱子伦视频-www在线观看av-黄色裸体网站-少妇高潮惨叫久久久久久-国产偷国产偷av亚洲清高-国产午夜精品理论片小yo奈-高大丰满熟妇丰满的大白屁股
  • <abbr id="a4qk0"><tfoot id="a4qk0"></tfoot></abbr>
    <fieldset id="a4qk0"></fieldset>
    天堂а√在线中文在线| 久久久久人妻精品一区三寸| 韩国视频一区二区三区| 久久久久久久激情| 欧美日韩在线中文| 中文字幕乱码人妻综合二区三区| 欧美成人精品免费| 欧美男女爱爱视频| av7777777| 免费看污黄网站| 污污视频网站在线| av片在线免费| 欧美 日韩 国产一区| 激情五月婷婷久久| 一本色道久久亚洲综合精品蜜桃| 亚洲综合在线网站| 中国老女人av| 国产最新免费视频| 亚洲老女人av| 九九久久九九久久| 日韩av黄色网址| 一级黄色特级片| 亚洲小视频在线播放| 欧洲精品一区二区三区久久| 丁香啪啪综合成人亚洲| 丝袜制服一区二区三区| 青青草综合视频| 超碰97人人射妻| 日日噜噜夜夜狠狠久久丁香五月| a级片一区二区| 三级在线免费看| 国产一区二区三区在线免费| 久久精品香蕉视频| 一级黄色大片儿| 精品99在线视频| 成人高清dvd| 亚洲天堂av一区二区| 日韩日韩日韩日韩日韩| 色黄视频免费看| 不要播放器的av网站| 9色porny| 91社在线播放| 天天色综合天天色| 国产玉足脚交久久欧美| 樱花草www在线| 三级a三级三级三级a十八发禁止| 99在线免费视频观看| 三年中文在线观看免费大全中国| 国产一二三区在线播放| 波多野结衣网页| 国产又黄又猛又粗| 国产精品第12页| 北条麻妃在线视频观看| 国产xxxx振车| 免费视频爱爱太爽了| 国产制服91一区二区三区制服| 成年人网站大全| 日韩久久一级片| 欧美精品一区免费| 免费看国产曰批40分钟| 国产美女作爱全过程免费视频| 亚洲一二三不卡| 伊人免费视频二| 激情久久综合网| 性做爰过程免费播放| 交换做爰国语对白| 成人短视频在线看| 男女h黄动漫啪啪无遮挡软件| 一级黄色片国产| 一本二本三本亚洲码| 国产精品一区在线免费观看| 青青草原播放器| 欧美 国产 精品| 国产欧美日韩网站| 欧美亚洲一二三区| 国产精品无码一本二本三本色| 2022亚洲天堂| 91最新在线观看| 久久精品国产精品亚洲精品色| 久久久久久久久网| 免费欧美一级视频| 天天干天天操天天玩| 中文字幕一区二区三区四区五区人| 久久av秘一区二区三区| 欧美日韩视频免费| 精品久久久久久中文字幕2017| 精品999在线| 警花观音坐莲激情销魂小说| 国产白丝袜美女久久久久| 久久婷婷五月综合色国产香蕉| 久久精品影视大全| 91精品一区二区三区四区| 久久99久久久久久| 在线免费观看av的网站| 可以在线看黄的网站| 欧美日韩国产精品激情在线播放| 岛国毛片在线播放| 又大又硬又爽免费视频| 三上悠亚在线一区二区| 成人免费性视频| 中文字幕亚洲影院| 免费观看精品视频| 中文字幕色呦呦| 污版视频在线观看| www国产精品内射老熟女| 国内精品国产三级国产aⅴ久| 久久久久久久久久久视频| 国产成人美女视频| 日本成人在线免费视频| 国产又粗又长又爽视频| 四季av一区二区三区| 欧美精品久久久久久久免费| 色男人天堂av| 美女在线视频一区二区| 青青青国产在线视频| 婷婷五月综合缴情在线视频| 天天干天天色天天干| 88av.com| 毛片av免费在线观看| 亚洲熟妇av日韩熟妇在线| 国产激情在线看| 亚洲图片 自拍偷拍| 日韩成人精品视频在线观看| 美女av免费在线观看| 日日摸日日碰夜夜爽无码| 国产免费一区二区视频| 成人小视频在线观看免费| 日本一级淫片演员| 黑人巨茎大战欧美白妇| 大桥未久一区二区| 91精品一区二区三区四区| 日本一二三区在线| 韩国黄色一级大片| 久久av高潮av| 欧美色图色综合| 任你操这里只有精品| 日本一极黄色片| 美女网站色免费| 超碰中文字幕在线观看| 日日噜噜夜夜狠狠久久丁香五月| 免费网站在线观看黄| 特色特色大片在线| 农民人伦一区二区三区| 男人天堂999| 杨幂毛片午夜性生毛片| www.污网站| 久久精品xxx| 一级特黄性色生活片| 亚洲36d大奶网| 好吊色视频988gao在线观看| 久草免费福利在线| 免费男同深夜夜行网站| 天天色天天干天天色| 97免费视频观看| 免费日韩中文字幕| 青少年xxxxx性开放hg| 国产伦精品一区二区三区四区视频_| 日本www在线视频| 亚洲第一天堂久久| 国内精品视频一区二区三区| 妓院一钑片免看黄大片| 国产女教师bbwbbwbbw| 黄色一级一级片| 天堂av.com| 日韩亚洲在线视频| 菠萝蜜视频在线观看入口| 那种视频在线观看| 中文字幕乱码免费| 波多结衣在线观看| 91动漫在线看| 夜夜夜夜夜夜操| 农村妇女精品一二区| 男人j进女人j| 日韩成人精品视频在线观看| www国产精品内射老熟女| 裸体大乳女做爰69| 91 在线视频观看| 欧美一级黄色影院| 激情五月宗合网| 免费看日本黄色| 亚洲在线观看网站| 少妇一级淫免费播放| 欧美日韩中文在线视频| 男女激情免费视频| 熟女视频一区二区三区| 亚洲天堂国产视频| 国产九九在线视频| 国产精品69页| 欧美 日韩 国产 激情| 97视频在线免费播放| 3d动漫一区二区三区| 免费无码毛片一区二三区| 日本三日本三级少妇三级66| 激情久久综合网| 成年人免费观看的视频| 亚洲这里只有精品| 色婷婷激情视频| 在线观看免费黄色片| 天堂网成人在线| 久久久久久久久网|